A Bayesian non-parametric hidden Markov random model for hemodynamic brain parcellation
نویسندگان
چکیده
Deriving a meaningful functional brain parcellation is a very challenging issue in task-related fMRI analysis. The joint parcellation detection estimation model addresses this issue by inferring the parcels from fMRI data. However, it requires a priori fixing the number of parcels through an initial mask for parcellation. Hence, this difficult task generally depends on the subject. The proposed automatic parcellation approach in this paper overcomes this limitation at the subject-level relying on a Dirichlet process mixture model combined with a hidden Markov random field to estimate the parcels and their number online. The proposed method adopts a variational expectation maximization strategy for inference. Compared to the model selection procedure in the joint parcellation detection estimation framework, our method appears more efficient in terms of computational time and does not require finely tuned initialization. Synthetic data experiments show that our method is able to estimate the right model order and an accurate parcellation. Real data results demonstrate the ability of our method to aggregate parcels with similar hemodynamic behaviour in the right motor and bilateral occipital cortices while its discriminating power is increased compared to its ancestors. Moreover, the obtained HRF estimates are close to the canonical HRF in both cortices.
منابع مشابه
A New Brain Segmentation Framework
We present a new brain segmentation framework which we apply to T1-weighted magnetic resonance image segmentation. The innovation of the algorithm in comparison to the state-of-the-art of nonsupervised brain segmentation is twofold. First, the algorithm is entirely non-parametric and non-supervised. We can therefore enhance the classically used gray level information of the images by other feat...
متن کاملمدل یابی انتشار بیماری های عفونی بر اساس رویکرد آماری بیز
Background and Aim: Health surveillance systems are now paying more attention to infectious diseases, largely because of emerging and re-emerging infections. The main objective of this research is presenting a statistical method for modeling infectious disease incidence based on the Bayesian approach.Material and Methods: Since infectious diseases have two phases, namely epidemic and non-epidem...
متن کاملA Non-Parametric Bayesian Method for Inferring Hidden Causes
We present a non-parametric Bayesian approach to structure learning with hidden causes. Previous Bayesian treatments of this problem define a prior over the number of hidden causes and use algorithms such as reversible jump Markov chain Monte Carlo to move between solutions. In contrast, we assume that the number of hidden causes is unbounded, but only a finite number influence observable varia...
متن کاملBayesian nonparametric hidden semi-Markov models
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDPHMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can exten...
متن کاملA fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI
Within-subject analysis in fMRI essentially addresses two problems, i.e., the detection of activated brain regions in response to an experimental task and the estimation of the underlying dynamics, also known as the characterisation of Hemodynamic response function (HRF). So far, both issues have been treated sequentially while it is known that the HRF model has a dramatic impact on the localis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 135 شماره
صفحات -
تاریخ انتشار 2017